

PMT

June 2010 Further Pure Mathematics FP1 6667 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $(2-3i)(2-3i) = \dots$ Expand and use $i^2 = -1$, getting completely correct	M1
	expansion of 3 or 4 terms	
	Reaches $-5-12i$ after completely correct work (must see $4-9$) (*)	A1cso (2)
	(b) $ z^2 = \sqrt{(-5)^2 + (-12)^2} = 13$ or $ z^2 = \sqrt{5^2 + 12^2} = 13$	M1 A1 (2)
	Alternative methods for part (b)	
	$ z^{2} = z ^{2} = 2^{2} + (-3)^{2} = 13$ Or: $ z^{2} = zz^{*} = 13$	M1 A1 (2)
	(c) $\tan \alpha = \frac{12}{5} (\text{ allow} - \frac{12}{5})$ or $\sin \alpha = \frac{12}{13}$ or $\cos \alpha = \frac{5}{13}$	M1
	$\arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1 (2)
	Alternative method for part (c) $\alpha = 2 \times \arctan\left(-\frac{3}{2}\right)$ (allow $\frac{3}{2}$) or use $\frac{\pi}{2} + \arctan\frac{5}{12}$	M1
	so $\arg(z^2) = -(\pi - 1.176) = -1.97$ (or 4.32) allow awrt	A1
	(d) Both in correct quadrants. Approximate relative scale No labels needed Allow two diagrams if some indication of scale Allow points or arrows	B1 (1) 7 marks
	Notes: (a) M1: for $4 - 9 - 12i$ or $4 - 9 - 6i - 6i$ or $4 - 3^2 - 12i$ but must have correct statement seen and see i^2 replaced by -1 maybe later A1: Printed answer. Must see $4 - 9$ in working. Jump from $4 - 6i - 6i + 9i^2$ to -5-12i is M0A0 (b) Method may be implied by correct answer. NB $ z^2 = 169$ is M0 A0 (c) Allow $\arctan \frac{12}{5}$ for M1 or $\pm \frac{\pi}{2} \pm \arctan \frac{5}{12}$	

Question Number	n Scheme	
2.	(a) $\mathbf{M} = \begin{pmatrix} 4 & 3 \\ 6 & 2 \end{pmatrix}$ Determinant: $(8-18) = -10$	B1
	$\mathbf{M}^{-1} = \frac{1}{-10} \begin{pmatrix} 2 & -3 \\ -6 & 4 \end{pmatrix} \qquad \begin{bmatrix} -0.2 & 0.3 \\ 0.6 & -0.4 \end{bmatrix}$	M1 A1 (3)
	(b) Setting $\Delta = 0$ and using $2a^2 \pm 18 = 0$ to obtain $a = .$	M1
	$a = \pm 3$	A1 cao (2)
		5 marks
	Notes: (a) B1: must be -10 M1: for correct attempt at changing elements in major diagonal and changing signs in minor diagonal. Three or four of the numbers in the matrix should be correct – eg allow one slip A1: for any form of the correct answer, with correct determinant then isw. Special case: <i>a</i> not replaced is B0M1A0	
	(b) Two correct answers, $a = \pm 3$, with no working is M1A1 Just $a = 3$ is M1A0, and also one of these answers rejected is A0. Need 3 to be simplified (not $\sqrt{9}$).	

Scheme a) $f(1.4) =$ and $f(1.5) =$ Evaluate both $f(1.4) = -0.256$ (or $-\frac{32}{125}$), $f(1.5) = 0.708$ (or $\frac{17}{24}$) Change of sign, \therefore root Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign \therefore root b) $f(1.45) = 0.221$ or 0.2 [\therefore root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or $-0.02\therefore root is in [1.425, 1.45]c) f'(x) = 3x^2 + 7x^{-2}f'(1.45) = 9.636 (Special case: f'(x) = 3x^2 + 7x^{-2} + 2 then f'(1.45) = 11.636)x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427Notes$	Marks M1 A1 (2) M1 M1 A1cso (3) M1 A1 A1ft M1 A1cao (5) 10 marks
f(1.4) = -0.256 (or $-\frac{32}{125}$), f(1.5) = 0.708 (or $\frac{17}{24}$) Change of sign, ∴ root Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign ∴ root b) f(1.45) = 0.221 or 0.2 [∴root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or -0.02 ∴ root is in [1.425, 1.45] c) f'(x) = $3x^2 + 7x^{-2}$ f'(1.45) = 9.636 (Special case: f'(x) = $3x^2 + 7x^{-2} + 2$ then f'(1.45) = 11.636) $x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	A1 (2) M1 M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign \therefore root b) $f(1.45) = 0.221$ or 0.2 [\therefore root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or $-0.02\therefore root is in [1.425, 1.45]c) f'(x) = 3x^2 + 7x^{-2}f'(1.45) = 9.636 (Special case: f'(x) = 3x^2 + 7x^{-2} + 2 then f'(1.45) = 11.636)x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	(2) M1 M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign \therefore root b) $f(1.45) = 0.221$ or 0.2 [\therefore root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or $-0.02\therefore root is in [1.425, 1.45]c) f'(x) = 3x^2 + 7x^{-2}f'(1.45) = 9.636 (Special case: f'(x) = 3x^2 + 7x^{-2} + 2 then f'(1.45) = 11.636)x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign ∴ root b) $f(1.45) = 0.221$ or 0.2 [∴ root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or $-0.02∴ root is in [1.425, 1.45]c) f'(x) = 3x^2 + 7x^{-2}f'(1.45) = 9.636 (Special case: f'(x) = 3x^2 + 7x^{-2} + 2 then f'(1.45) = 11.636)x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
A1 then needs correct graph and conclusion, i.e. change of sign \therefore root (b) $f(1.45) = 0.221$ or 0.2 [\therefore root is in [1.4, 1.45]] f(1.425) = -0.018 or -0.019 or $-0.02\therefore root is in [1.425, 1.45](c) f'(x) = 3x^2 + 7x^{-2}f'(1.45) = 9.636 (Special case: f'(x) = 3x^2 + 7x^{-2} + 2 then f'(1.45) = 11.636)x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
f (1.425) = -0.018 or -0.019 or -0.02 ∴ root is in [1.425, 1.45] (c) f'(x) = 3x ² + 7x ⁻² f'(1.45) = 9.636 (Special case: f'(x) = 3x ² + 7x ⁻² + 2 then f'(1.45) = 11.636) x ₁ = 1.45 - $\frac{f(1.45)}{f'(1.45)}$ = 1.45 - $\frac{0.221}{9.636}$ = 1.427	M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
f (1.425) = -0.018 or -0.019 or -0.02 ∴ root is in [1.425, 1.45] (c) f'(x) = 3x ² + 7x ⁻² f'(1.45) = 9.636 (Special case: f'(x) = 3x ² + 7x ⁻² + 2 then f'(1.45) = 11.636) x ₁ = 1.45 - $\frac{f(1.45)}{f'(1.45)}$ = 1.45 - $\frac{0.221}{9.636}$ = 1.427	M1 A1cso (3) M1 A1 A1ft M1 A1cao (5)
f (1.425) = -0.018 or -0.019 or -0.02 ∴ root is in [1.425, 1.45] (c) f'(x) = 3x ² + 7x ⁻² f'(1.45) = 9.636 (Special case: f'(x) = 3x ² + 7x ⁻² + 2 then f'(1.45) = 11.636) x ₁ = 1.45 - $\frac{f(1.45)}{f'(1.45)}$ = 1.45 - $\frac{0.221}{9.636}$ = 1.427	A1cso (3) M1 A1 A1ft M1 A1cao (5)
(c) $f'(x) = 3x^2 + 7x^{-2}$ $f'(1.45) = 9.636$ (Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$) $x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	(3) M1 A1 A1ft M1 A1cao (5)
(c) $f'(x) = 3x^2 + 7x^{-2}$ $f'(1.45) = 9.636$ (Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$) $x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	(3) M1 A1 A1ft M1 A1cao (5)
$f'(1.45) = 9.636$ (Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$) $x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 A1 A1ft M1 A1cao (5)
$x_1 = 1.45 - \frac{f(1.45)}{f'(1.45)} = 1.45 - \frac{0.221}{9.636} = 1.427$	M1 A1cao (5)
· · /	(5)
· · /	(5)
Notes	10 marks
Notes	•
(b) M1: See f(1.45) attempted and positive M1: See f(1.425) attempted and negative A1: is cso – any slips in numerical work are penalised here even if correct region for Answer may be written as $1.425 \le \alpha \le 1.45$ or $1.425 < \alpha < 1.45$ or $(1.425, 1.45)$ m way round. Between is sufficient. There is no credit for linear interpolation . This is M0 M0 A0 Answer with no working is also M0M0A0	
(c) M1: for attempt at differentiation (decrease in power) A1 is cao Second A1may be implied by correct answer (do not need to see it) ft is limited to special case given. 2^{nd} M1: for attempt at Newton Raphson with their values for f(1.45) and f'(1.45). A1: is cao and needs to be correct to 3dp Newton Raphson used more than once – isw. Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$) is M1 A0 A1ft M1 A can also be given by implication from final answer of 1.43	0 This mark
22	M1: See f(1.425) attempted and negative A1: is cso – any slips in numerical work are penalised here even if correct region for Answer may be written as $1.425 \le \alpha \le 1.45$ or $1.425 < \alpha < 1.45$ or $(1.425, 1.45)$ m way round. Between is sufficient. There is no credit for linear interpolation . This is M0 M0 A0 Answer with no working is also M0M0A0 (c) M1: for attempt at differentiation (decrease in power) A1 is cao Second A1may be implied by correct answer (do not need to see it) ft is limited to special case given . 2^{nd} M1: for attempt at Newton Raphson with their values for f(1.45) and f'(1.45). A1: is cao and needs to be correct to 3dp Newton Raphson used more than once – isw. Special case: $f'(x) = 3x^2 + 7x^{-2} + 2$ then $f'(1.45) = 11.636$) is M1 A0 A1ft M1 A

		Ţ]
Question Number	Scheme	Marks
4.	(a) $a = -2$, $b = 50$	B1, B1 (2)
	(b) -3 is a root	B1
	Solving 3-term quadratic $x = \frac{2 \pm \sqrt{4 - 200}}{2}$ or $(x - 1)^2 - 1 + 50 = 0$	M1
	= 1 + 7i, 1-7i	A1, A1ft (4)
	(c) $(-3) + (1+7i) + (1-7i) = -1$	B1ft (1) 7 marks
	Notes (a) Accept $x^2 - 2x + 50$ as evidence of values of <i>a</i> and <i>b</i> . (b) B1: -3 must be seen in part (b) M1: for solving quadratic following usual conventions A1: for a correct root (simplified as here) and A1ft: for conjugate of first answer. Accept correct answers with no working here. If answers are written down as factors then isw. Must see roots for marks. (c) ft requires the sum of two non-real conjugate roots and a real root resulting in a real number. Answers including <i>x</i> are B0	

Question Number	Scheme	Marks
5.	(a) $y^2 = (10t)^2 = 100t^2$ and $20x = 20 \times 5t^2 = 100t^2$ Alternative method: Compare with $y^2 = 4ax$ and identify $a = 5$ to give answer.	B1 (1) B1 (1)
	(b) Point <i>A</i> is (80, 40) (stated or seen on diagram). May be given in part (a) Focus is (5, 0) (stated or seen on diagram) or (<i>a</i> , 0) with <i>a</i> = 5 May be given in part (a). Gradient: $\frac{40-0}{80-5} = \frac{40}{75} \left(=\frac{8}{15}\right)$	B1 B1 M1 A1 (4) 5 marks
	 Notes: (a) Allow substitution of x to obtain y = ±10t (or just 10t) or of y to obtain x (b) M1: requires use of gradient formula correctly, for their values of x and y. This mark may be implied by correct answer. Differentiation is M0 A0 A1: Accept 0.533 or awrt 	

Question Number	Scheme	Marks
6.	$(a) \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$	B1 (1)
	$(b) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	B1 (1)
	(c) $\mathbf{T} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & -8 \end{pmatrix}$	M1 A1 (2
	(d) $\mathbf{AB} = \begin{pmatrix} 6 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} k & 1 \\ c & -6 \end{pmatrix} = \begin{pmatrix} 6k+c & 0 \\ 4k+2c & -8 \end{pmatrix}$	M1 A1 A1 (3
	(e) " $6k + c = 8$ " and " $4k + 2c = 0$ " Form equations and solve simultaneously	M1
	k = 2 and $c = -4$	A1 (2 9 marks
	Alternative method for (e) M1: $AB = T \Rightarrow B = A^{-1}T =$ and compare elements to find <i>k</i> and <i>c</i> . Then A1 as before.	
	Notes	
	 (c) M1: Accept multiplication of their matrices either way round (this can be implied by correct answer) A1: cao 	
	 (d) M1: Correct matrix multiplication method implied by one or two correct terms in correct positions. A1: for three correct terms in correct positions 2nd A1: for all four terms correct and simplified 	
	(e) M1: follows their previous work but must give two equations from which k and c can be found and there must be attempt at solution getting to $k = \text{ or } c =$.	

Question	Sahama		Marka
Number	Scheme		Marks
7.	(a) LHS = $f(k+1) = 2^{k+1} + 6^{k+1}$	OR RHS =	M1
		$= 6f(k) - 4(2^{k}) = 6(2^{k} + 6^{k}) - 4(2^{k})$	
	$=2(2^{k})+6(6^{k})$	$=2(2^{k})+6(6^{k})$	A1
	$= 6(2^{k} + 6^{k}) - 4(2^{k}) = 6f(k) - 4(2^{k})$	$= 2^{k+1} + 6^{k+1} = f(k+1) $ (*)	A1 (3)
	OR $f(k+1) - 6f(k) = 2^{k+1} + 6^{k+1} - 6(2^k + 6^k)$)	M1
	$=(2-6)(2^k)=-4.2^k$, and so f(k+1)	$= 6f(k) - 4(2^k)$	A1, A1
			(3)
		91.1.0	B1
	(b) $n = 1$: $f(1) = 2^1 + 6^1 = 8$, which is divis	•	
	Either Assume $f(k)$ divisible by 8 and try to use $f(k + 1) = 6f(k) - 4(2^k)$	Or Assume $f(k)$ divisible by 8 and try to use $f(k + 1)-f(k)$ or $f(k + 1) + f(k)$ including factorising $6^k = 2^k 3^k$	M1
	Show $4(2^{k}) = 4 \times 2(2^{k-1}) = 8(2^{k-1})$ or $8(\frac{1}{2}2^{k})$	$=2^{3}2^{k-3}(1+5.3^{k})$ or	A1
	Or valid statement	$=2^{3}2^{k-3}(3+7.3^{k})$ o.e.	
	Deduction that result is implied for	Deduction that result is implied for	A1cso
	n = k + 1 and so is true for positive integers	n = k + 1 and so is true for positive integers	(4)
	by induction (may include $n = 1$ true here)	by induction (must include explanation of why $n = 2$ is also true here)	7 marks
	 equation and reach the other or show that each (b) B1: for substitution of n = 1 and stating "t appear in the concluding statement of the p M1: Assume f(k) divisible by 8 and consider for lead to proof – not merely f (k+1) – f(k) unless A1: Indicates each term divisible by 8 OR take A1: Induction statement . Statement n = 1 here NB: f(k+1) – f(k) = 2^{k+1} – 2^k + 6^{k+1} – 6^k = (b) "Otherwise" methods Could use: f(k+1) = 2f(k) + 4(6^k) or f(k similar way to given expression and Left here. 	s cao mbiguity (needs (for example) to start with one s side separately is $2(2^k) + 6(6^k)$ and conclude rue for $n = 1$ " or "divisible by 8" or tick. (This s proof) $(k + 1) = 6f(k) - 4(2^k)$ or equivalent expression deduce that 2 is a factor of 6 (see right hand sch es out factor 8 or 2^3 could contribute to B1 mark earlier. $= 2^k + 5.6^k$ only is M0 A0 A0 $+2) = 36f(k) - 32(6^k)$ or $f(k + 2) = 4f(k) + 3$	LHS = RHS) tatement may that could neme above). $32(2^k)$ in a

РM	Т
1 171	'

Question	Scheme		Marks	
Number 8.			B1 (1)	
	(b) $y = \frac{c^2}{x} \Longrightarrow \frac{dy}{dx} = -c^2 x^{-2}$,		_	B1
	or $y + x \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$ or	$\dot{x} = c$, $\dot{y} = -\frac{c}{t^2}$ so $\frac{dy}{dx} = -\frac{c}{t^2}$	$-\frac{1}{t^2}$	
	and at $A \frac{dy}{dx} = -\frac{c^2}{(3c)^2} = -\frac{1}{9}$	so gradient of normal is	s 9	M1 A1
	Either $y - \frac{c}{3} = 9(x - 3c)$	or $y=9x+k$ and use	$x=3c, y=\frac{c}{3}$	M1
	$\Rightarrow 3y = 27x - 80c$	(*)		A1 (5)
	(c) $\frac{c^2}{x} = \frac{27x - 80c}{3}$	$\frac{c^2}{y} = \frac{3y + 80c}{27}$	$3\frac{c}{t} = 27ct - 80c$	M1
	$3c^2 = 27x^2 - 80cx$ 2 ²	$7c^2 = 3y^2 + 80cy$	$3c = 27ct^2 - 80ct$	A1
	(x-3c)(27x+c) = 0 so $x = (y+)$			M1
	$x = -\frac{c}{27}$, $y = -27c$ $x =$	$-\frac{c}{27}$, $y = -27c$		A1, A1
			$x = -\frac{c}{27}$, $y = -27c$	11 marks
	Notes		dy	
	(b) B1: Any valid method of diff	-	dx	
	M1 : Substitutes values and use A1: 9 cao (needs to follow cale M1: Finds equation of line thro A1: Correct work throughout –	culus) bugh A with any gradient	(other than 0 and ∞)	
	(c) M1: Obtains equation in one y A1: Writes as correct three term M1: Attempts to solve three term A1: x coordinate, A1: y coordin	n quadratic (any equivale n quadratic to obtain $x = 0$	or $y = $ or $t =$	

PMT

		ſ
estion nber	Scheme	Marks
9.	(a) If $n = 1$, $\sum_{r=1}^{n} r^2 = 1$ and $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$, so true for $n = 1$. Assume result true for $n = k$	B1 M1
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1
	$=\frac{1}{6}(k+1)(2k^2+7k+6) \text{ or } =\frac{1}{6}(k+2)(2k^2+5k+3) \text{ or } =\frac{1}{6}(2k+3)(k^2+3k+2)$	A1
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text{ or equivalent}$	dM1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all n .	A1cso (6)
	Alternative for (a) After first three marks B M M1 as earlier : May state RHS = $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$ for third M1	B1M1M1 dM1
	Expands to $\frac{1}{6}(k+1)(2k^2+7k+6)$ and show equal to $\sum_{r=1}^{k+1}r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$ for A1 So true for $n = k + 1$ if true for $n = k$, and true for $n = 1$, so true by induction for all n .	A1 A1cso
	(b) $\sum_{r=1}^{n} (r^2 + 5r + 6) = \sum_{r=1}^{n} r^2 + 5\sum_{r=1}^{n} r + (\sum_{r=1}^{n} 6)$ $\frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1), + 6n$	(6) M1
	$= \frac{1}{6}n[(n+1)(2n+1) + 15(n+1) + 36]$	A1, B1 M1
	$=\frac{1}{6}n[2n^{2}+18n+52] = \frac{1}{3}n(n^{2}+9n+26) \text{or } a = 9, b = 26$	A1 (5)
	(c) $\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3} 2n(4n^2 + 18n + 26) - \frac{1}{3}n(n^2 + 9n + 26)$	M1 A1ft
	$\frac{1}{3}n(8n^2 + 36n + 52 - n^2 - 9n - 26) = \frac{1}{3}n(7n^2 + 27n + 26) $ (*)	A1cso (3) 14 marks
	Notes: (a) B1: Checks $n = 1$ on both sides and states true for $n = 1$ here or in conclusion M1: Assumes true for $n = k$ (should use one of these two words) M1: Adds $(k+1)$ th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6}n(n+1)(2n+1)$ with $n = k + 1$	

A1: Makes induction statement. Statement true for n = 1 here could contribute to B1 mark earlier

Question 9 Notes continued: (b) M1: Expands and splits (but allow 6 rather than sigma 6 for this mark) A1: first two terms correct B1: for 6 <i>n</i> M1: Take out factor <i>n</i> /6 or <i>n</i> /3 correctly – no errors factorising A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i> (c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least once A1ft Two correct expressions for their a and b values
A1ft Two correct expressions for their a and b values A1: Completely correct work to printed answer